LangChain 5易速鲜花内部问答系统

2023/11/30 9:13:49

展示了一个完整的问答系统的实现,使用了Flask来构建Web界面、langchain进行文档处理和检索,以及OpenAI的语言模型。代码的复杂性在于集成了多种高级技术和处理大型数据集和语言模型。

  1. LangChain 实现给动物取名字,
  2. LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
  3. LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
  4. LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve

运行效果如下:
在这里插入图片描述
代码以及注释如下(代码为黄佳老师的课程Demo,如需要知道代码细节请读原文):

import os  # 导入os模块,用于与文件系统交互

# 从langchain导入各种文档加载器
from langchain.document_loaders import PyPDFLoader  # 加载PDF文档的加载器
from langchain.document_loaders import Docx2txtLoader  # 加载DOCX文档的加载器
from langchain.document_loaders import TextLoader  # 加载纯文本文档的加载器
from dotenv import load_dotenv  # 导入dotenv,用于管理环境变量

load_dotenv()  # 从.env文件加载环境变量

# 从指定目录加载文档
base_dir = './OneFlower'  # 存储文档的目录
documents = []
for file in os.listdir(base_dir):
    file_path = os.path.join(base_dir, file)  # 构建完整的文件路径
    if file.endswith('.pdf'):
        loader = PyPDFLoader(file_path)  # 加载PDF文件
        documents.extend(loader.load())
    elif file.endswith('.docx'):
        loader = Docx2txtLoader(file_path)  # 加载DOCX文件
        documents.extend(loader.load())
    elif file.endswith('.txt'):
        loader = TextLoader(file_path)  # 加载文本文件
        documents.extend(loader.load())

# 将文档分割成块以便嵌入和向量存储
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=10)
chunked_documents = text_splitter.split_documents(documents)

# 在Qdrant向量数据库中存储分割和嵌入的文档
from langchain.vectorstores import Qdrant
from langchain.embeddings import OpenAIEmbeddings
vectorstore = Qdrant.from_documents(
    documents=chunked_documents,
    embedding=OpenAIEmbeddings(),
    location=":memory:",
    collection_name="my_documents",)

# 设置模型和检索链
import logging
from langchain.chat_models import ChatOpenAI
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.chains import RetrievalQA

logging.basicConfig()
logging.getLogger('langchain.retrievers.multi_query').setLevel(logging.INFO)

llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)  # 初始化一个大型语言模型工具 - OpenAI的GPT-3.5

retriever_from_llm = MultiQueryRetriever.from_llm(retriever=vectorstore.as_retriever(), llm=llm)  # 初始化一个MultiQueryRetriever

qa_chain = RetrievalQA.from_chain_type(llm, retriever=retriever_from_llm)  # 初始化一个RetrievalQA链

# 使用Flask实现问答系统的UI
from flask import Flask, request, render_template
app = Flask(__name__)  # 创建Flask应用

@app.route('/', methods=['GET', 'POST'])
def home():
    if request.method == 'POST':
        question = request.form.get('question')  # 接收用户输入作为问题
        result = qa_chain({"query": question})  # RetrievalQA链 - 读取问题,生成答案
        return render_template('index.html', result=result)  # 返回模型答案以渲染网页
    
    return render_template('index.html')  # 渲染网页

if __name__ == "__main__":
    app.run(host='0.0.0.0',debug=True,port=5000)  # 运行Flask应用

在这里插入图片描述

代码

  • https://github.com/zgpeace/pets-name-langchain/tree/feature/docQA

参考

  • https://github.com/huangjia2019/langchain/tree/main/02_%E6%96%87%E6%A1%A3QA%E7%B3%BB%E7%BB%9F

http://www.jnnr.cn/a/1081994.html

相关文章

微信私域运营工具CRM

为什么要做微信私域? 客户在哪里?微信!在中国,不论男女老少,90%的人每天使用微信至少5次,每次使用时间超过90分钟,已经成为像吃饭穿衣一样的生活必需品。因此,我们的目标客户就在微…

C练习题_14

一、单项选择题(本大题共 20小题,每小题 2分,共 40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 以下叙述不正确的是() A.一个C源程序可…

飞翔的小鸟

运行游戏如下: 碰到柱子就结束游戏 App GameApp类 package App;import main.GameFrame;public class GameApp {public static void main(String[] args) {//游戏的入口new GameFrame();} } main Barrier 类 package main;import util.Constant; import util.Ga…

复杂数据统计与R语言程序设计实验一

1.下载并安装R语言软件,熟悉基本操作的命令及操作界面,掌握软件的使用方法(提供学号加姓名的截图)。 2.下载并安装Rstudio, (提供运行代码及运行结果的截图)。 3.下载并安装R包DT,…

文件上传漏洞(CVE-2022-23043)

简介 CVE-2022-23043是一个与Zenario CMS 9.2文件上传漏洞相关的安全漏洞。该漏洞被定义为文件的不加限制上传,攻击者可以利用这个漏洞上传webshell以执行任意命令。利用这个漏洞的攻击者暂无特定情况。要利用此漏洞,攻击者首先需要访问Zenario CMS的管…

【Linux】套接字编程

目录 套接字 IP PORT TCP和UDP的介绍 TCP UDP 网络字节序 转换接口 UDP服务器的编写 服务器的初始化 socket bind sockaddr 结构 服务器的运行 数据的收发 业务处理 客户端的编写 运行效果 拓展 套接字 🌸首先,我们先思考一个问题…

EI论文程序:Adaboost-BP神经网络的回归预测算法,可作为深度学习对比预测模型,丰富实验内容,自带数据集,直接运行!

适用平台:Matlab 2021及以上 本程序参考中文EI期刊《基于Adaboost的BP神经网络改进算法在短期风速预测中的应用》,程序注释清晰,干货满满,下面对文章和程序做简要介绍。 为了提高短期风速预测的准确性,论文提出了使用…

队列的实现和OJ练习

目录 概念 队列的实现 利用结构体存放队列结构 为什么单链表不使用这种方法? 初始化队列 小提示: 队尾入队列 队头出队列 获取队头元素 获取队尾元素 获取队列中有效元素个数 检测队列是否为空 销毁队列 最终代码 循环队列 队列的OJ题 …

十. Linux关机重启命令与Vim编辑的使用

关机重启命令 shutdown命令 其他关机命令 其他重启命令 系统运行级别 系统默认运行级别与查询 退出登录命令logout 文本编辑器Vim Vim简介 没有菜单,只有命令Vim工作模式 Vim常用命令 插入命令 定位命令 删除命令 复制和剪切命令 替换和取消命令 搜索和搜索替换命令 保存和退出…

微机原理_14

一、单项选择题(本大题共15小题,每小题3分,共45分。在每小题给出的四个备选项中,选出一个正确的答案。) 1,下面寻址方式的操作数不在存储器中的是() A. 堆栈寻址 B. 寄存器间址 C.寄存器寻址 D. 直接寻址 2,条件转移指令JNE的条件是() A. CF…

【每日刷题——语音信号篇】

思考与练习 练习2.1 语音信号在产生的过程中,以及被感知的过程中,分别要经过人体的哪些器官? 1.产生过程: 肺部空气 → \rightarrow →冲击声带 → \rightarrow →通过声道(可以调节) → \rightarrow →…

【洛谷 P3743】kotori的设备 题解(二分答案+循环)

kotori的设备 题目背景 kotori 有 n n n 个可同时使用的设备。 题目描述 第 i i i 个设备每秒消耗 a i a_i ai​ 个单位能量。能量的使用是连续的,也就是说能量不是某时刻突然消耗的,而是匀速消耗。也就是说,对于任意实数,…

ModernCSS.dev - 来自微软前端工程师的 CSS 高级教程,讲解如何用新的 CSS 语法来解决旧的问题

今天给大家安利一套现代 CSS 的教程,以前写网页的问题,现在都可以用新的写法来解决了。 ModernCSS.dev 是一个现代 CSS 语法的教程,讲解新的 CSS 语法如何解决一些传统问题,一共有30多课。 这套教程的作者是 Stephanie Eckles&am…

人工智能给我们的生活带来了巨大的影响?

1. 人工智能从哪些方面给我们带来了影响? 人工智能出现,极大地影响了人类的生活,下面是人工智能所影响的领域: 1. 日常生活 智能家居: AI驱动的设备,如智能扬声器、灯光、恒温器,正在改变我们与家居环境的…

基于AVR单片机的便携式心电监测设备设计与实现

基于AVR单片机的便携式心电监测设备是一种常用的医疗设备,用于随时监测和记录人体的心电信号。本文将介绍便携式心电监测设备的设计原理和实现步骤,并提供相应的代码示例。 1. 设计概述 便携式心电监测设备是一种小巧、方便携带的设备,能够…

基于水基湍流算法优化概率神经网络PNN的分类预测 - 附代码

基于水基湍流算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于水基湍流算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于水基湍流优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

Linux内核的安装

1.通过tftp 加载内核和根文件系统 即sd内存卡启动: SD卡的存储以扇区为单位,每个扇区的大小为512Byte, 其中零扇区存储分区表(即分区信息),后续的扇区可自行分区和格式化; 若选择SD卡启动,处理器上电后从第一个扇区开…

【C++上层应用】2. 预处理器

文章目录 【 1. #define 预处理 】【 2. #ifdef、#if 条件编译 】2.1 #ifdef2.2 #if2.3 实例 【 3. # 和 ## 预处理 】3.1 # 替换预处理3.2 ## 连接预处理 【 4. 预定义宏 】 预处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。 所有的预处理器指令都是…

Node.js环境配置级安装vue-cli脚手架

一、下载安装Node.js (略) 二、验证node.js并配置 1、下载安装后,cmd面板输入node -v查询版本、npm -v ,查看npm是否安装成功(有版本号就行了) 2、选择npm镜像(npm config set registry https://registry.npm.taobao.org&…

AIGC ChatGPT4对Gbase数据库进行总结

ChatGPT4 用一个Prompt完成Gbase数据库的总结。 AIGC ChatGPT 职场案例 AI 绘画 与 短视频制作 PowerBI 商业智能 68集 数据库Mysql 8.0 54集 数据库Oracle 21C 142集 Office 2021实战应用 Python 数据分析实战, ETL Informatica 数据仓库案例实战 Excel 2021实操 …
最新文章